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1. INTRODUCTION

The dynamic response of a projectile traveling in a gun tube is influenced by the material and

geometric properties of the components of the gun system and the mani;.r in which these components

interact. The two primary components of the gun system which are typically considered are the gun tube

and the projectile. The detail with which these components are modeled depends upon the intended

application. Complex finite element (FE) models in which fine details are included are normally related

to stress analysis predictions in which the survivability of the projectile components is of primary concern

(Wilkerson 1990). Less detailed beam models which are capable of capturing the basic gross deformation

of the projectile and tube during firing are routinely used to determine quantities such as the rigid body

motion of the projectile during shot exit (Erline and Kregel 1990; Hopkins 1990).

Both modeling approaches require a means to determine the interaction forces which develop between

the projectile and the gun tube during the interior ballistic cycle. The FE models use slideline techniques

(Hallquist 1978). Changes in the projectile geometry are reflected by changes in the interface loads

determined by the slideline algorithms. While accurate, these algorithms are often very complex and can

result in substantial increases in computer execution time. The simpler beam models employ interface

routines which attempt to model the tube/projectile interaction by a combination of linear and torsional

springs which are compressed by the relative displacements between the gun and projectile components

(Erline and Kregel 1990; Soifer and Becker 1987). These simpler models do not lead to substantial

increases in computer execution times. However, valid values for the spring coefficients for different

projectile geometries are difficult to determine.

Numerous iterations of an analysis may be required to determine the effect of changes in projectile

design when the goal of the simulation is the determination of the effect of the interaction loads upon

some characteristic of the dynamic response of the projectile. These iterations can be costly either because

of increased computer time required by the FE models or additional runs required by the simpler beam

models to explore the effects in uncertainties regarding appropriate spring coefficients. This iterative

process is often referred to as a parametric or sensitivity study. The number of iterations requiicd in the

parametric study can be reduced while simultaneously increasing the quality of information obtained using

experimental design methodology (E. I. Du Pont de Nemours & Co. 1988). The applicability of

experimental design in computer simulation is illustrated in this paper by examining the dynamic response

characteristics of a projectile to changes in the interface spring stiffness coefficients which determine the



loads between the projectile and gun tube in the interface model used in the SHOGUN gun dynamics

code. The primary goal of the study is the determination of the response surfaces for two of the projectile

shot exit rigid body motion parameters. Results for the predicted response surface of the angle of the

crossing velocity vector, ev. and the angle of the angular velocity vector, 0•, during shot exit are

presented.

2. ANALYSIS

The interface between the gun and the projectile is modeled in SHOGUN as interacting beams coupled

by linear and torsional springs (Figure 1). The linear spring describing the forward spring connection, X3,

can also have a clearance which is used to simulate impact. Altogether, there are seven parameters in the

interface model. In this paper, only four of these parameters are varied. These four parameters are the

two linear, X1 and X3, and two torsional, X2 and X4, spring coefficients. The ranges of these parameters

are listed in Table 1. Shogun does not specify allowable values for these parameters, the ranges selected

are intended to encompass values that may be considered reasonable. The order of magnitude of these

values is based upon consideratior of the actual structural stiffness of the components which the springs

represent.

Table 1. Range of Factor Values

Value

Factor Low High

XI(lb/in) 1.0x 103  200.0x 106

X2(in lb/rad) 0.0 20.0x 106

X3(lb/in) 1.0x10 3  20.0x 106

XV(in lb/rad) 0.0 2.0x10 6

The three parameters not examined correspond to the clearance between the forward bell and the gun

tube, and to two spring stiffness coefficients which couple angular displacement with radial loads. The

clearance was not included in this study simply to reduce the complexity of the analysis. The effects of

the spring stiffness coefficients which couple angular displacement with radial loads were not included

2
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Figure 1. Gun tube/projectile interface model.

because the appropriateness and validity of these parameters is doubtful. For this study, the clearance was

set to a fixed value of 0.004 in, based on projectile drawings, while the neglected stiffness coefficients

were set to zero.

A face-centered cube (FCC) expenrmental design is used to determine which combination of values

of the spring stiffness coefficients is used to generate the response surfaces. There are two primary

reasons for using the FCC design. First, the data obtained allows preLise estimation of the coefficients

of a predictive equation. Second, the FCC design obtains information concerning the effects of the

independent variables, called factors, at the extremes of high/low for each factor. A predictive equation

is thus obtained which spans the entire factor space. These concepts are easily explained visually using

an FCC design for three factors (Figure 2). It is seen that 15 data points are required--one at each comer,

one at the center of each face, and one at the center of the cube. This design does not require replication

of any individual data point. The comer points represent the extreme values of the factors. The midrange

data point locations allow the determination of interaction and curvature effects. In this study, the FCC

design for four factors requires a total of 25 data points to map the response surface. A deterministic

process is one for which the system error is identically zero. This is the case for FE analysis since results

3
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Figure 2. Three-factor face-centered cube.

for a given problem will not change from one computer run to the next. Thus, SHOGUN is a

deterrrmnistic process.

Two response surfaces have been generated: the angle of the crossing velocity vector, Ov, and the

angle of the angular velocity vector, 0q, during shot exit. These responses have been selected to illustrate

the utility of the; technique. The data gathered reveal that the torsional spring, X4, does not affect the

observed responses. Consequently, this factor is not considered in the subsequent numerical analysis of

the data.

For each response, a quadratic polynomial of the form

Y =bo + b, Z, + b2 Z2 + b 3 Z 3

"+ b 12 ZIZ 2 + b13 ZIZ 3

"+ b23 Z 2 Z 3 + b 11Z12

2 + b3Z2
"+ b22 Z 2 + 33 Z3
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where Zi = (Xi)½, is used to generate the response surface. This polynomial representation includes all

linear, quadratic, and two-way interactions between the factors. A standard regression analysis is used to

compute the coefficients of the polynomial. The units of these coefficients are simply those required to

convert the response to radians. Thus, the units of bo is radians, b, and b3 are (rad 2 lb/in) 'A, I2 is

(rad/(in-lb) ½, etc. The coefficients of the polynomials for ev and 0• are presented in Table 2. Response

surfaces for Ov and Oý, obtained for a constant value of X3, are shown in Figures 3 and 4, respectively.

Contour plots obtained from these surfaces are shown in Figures 5 and 6. Contour plots are projections

of the response surface onto the Z1Z2 plane. The Z7Z2 plane corresponds to the square root of the range

of values that can be used for the linear and torsional spring parameters of the obturator. Thus, this plane

represents, indirectly through these stiffness parameters, the geometry of the obturator and the effect of

the geometry on stiffness.

Table 2. Coefficient Values for Selected Responses

ir b, b2  
1 b3  b12  f b13 Ib 23 [b11 1 bh2 [ b33 I [RMS

YI O I0 J xO" 
3  .xXI_ xX 10 X J lO 0

4  
xlO X0

8 I Rx10I Error

0 .5.26 0.21 0.35 -1.40 -1.56 6.93 5.88 0.08 -5.10 10.21 0.87 0.47

8 2.21 0.10 1.48 -0.89 -4.26 -1.41 6.27 0.15 -23.88 20.78 0.86 0.37

3. DISCUSSION

In the previous section, response surfaces were generated by fitting the data to a second-order

polynomial. The selection of this polynomial represents a rudimentary model which is capable of

capturing both curvature and interaction effects. No transformations were used on the responses 0, and

0,. However, the factors X1, X2, and X3 were transformed using terms in powers of the square root of

the factors. The square root transformation was selected based on the following observation. Examining

Figure 1, it is reasonable to expect the interface model to behave in some sense like a simple spring-mass

vibrating system. For this type of behavior, the response is proportional to the frequency of the system.

which is, in turn, proportional to the square root of the stiffness (Mcirovitch 1967).

The degree of success with which the response surfaces are rc )rescnted can be quantified by

examining the value of the adjusted R2. Since there is no experimental error. R2adj represents the goodness
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of fit of the model. R2dj values for both models are listed in Table 2. For 0v, Radj is 0.87; while for 0.-
R2dj is 0.86. This means that 87% or 86% of the total variation in the response of 0v or O, respectively,

is explained by the model. The residual mean square (RMS) error is 0.47 and 0.37 for the two responses,

respectively. Generally, the RMS error is a direct estimate of the combination of system error and model

lack-of-fit. Since system error in this study is zero, the RMS error indicates directly the goodness-of-fit

of the response surface to the exact surface over the entire range of the factors. Another means of

checking the accuracy of the response surface models is by comparing the predicted values of 0v andO,

with the actual results of SHOGUN which were used to generate the surfaces. This comparison is shown

in Table 3. It is noted that there are several points which exceed the RMS error estimate by appreciable

amounts. Although not perfect, the overall goodness-of-fit of the response surface models is adequate to

capture the basic topology of the response surfaces.

The fact that factor X4 does not affect the observed responses in any manner is disconcerting. There

are four possible explanations for this behavior. First, it is possible that over the range selected, there is

indeed absolutely no contribution to the response which can be attributed to X4. This is highly

improbable. Second, X4 is affected by the value of the clearance parameter. The clearance parameter is

one of the parameters held constant in this study. It is possible that the X4 value selected allowed X3 to

affect the response while constraining any effect due to X4. Third, there may be a coding error in the

SHOGUN loading algorithm. Fourth, the SHOGUN interface model may not correctly model the effect

of X4. At this point, it is not known which of these explanations is correct.

The two response surfaces illustrate several important features. Consider the response surface for 0,.

The overall shape is basically a conic section. The minimum value of 0V for a fixed value of X3 occurs

when X1 is maximized and X2 is minimized. This can be seen directly from Figure 3. The maximum

response for 0V is obtained when X1 is minimized and X2 is maximized. Generally, increasing X1 while

decreasing X2, at a fixed value of X3, results in a lower value of 0v.

Next, consider the response surface for O,, which has a saddle point. The minimum value of 0ý is

obtained when X1 and X2 are both minimized. However, in this region, relatively small changes in either

factor result in relatively large changes in the response 0 W when compared to the saddle region of

Figure 6. This saddle region is often referred to as a "robust" region. If sensitivity of 0, to variations

in X1 and X2 is to be minimized, then values of X1 and X2 should be selected such that the response is

in the saddle region. From Figure 6, the desired ranges are thus 64x106 < X1 < 200x106 and 4x10 6 <

X2 < l0x106. In this region, the response is approximately 3.6 radians.

9



Table 3. Comparison of Actual and Predicted Response Values

Factors 0, (rad) 0, (rad)

X1 (lb/in) X2 (in-lb/rad) X3 (lb/in) Actual Predicted Actual Predicted

1(103) 0 1(103) 5.5148 5.2044 2.2737 2.1873

200(106) 0 1(10&) 2.1941 2.4140 3.7980 3.8907

1(103) 20(106) 1(103) 5.6086 5.7613 3.9130 4.0244

200(106) 20(106) 1(103) 2.4694 1.9853 3.1472 3.0371

1(103) 0 20( 106) .7462 1.0570 2.2697 2.3810

200(106) 0 20(106) 2.7105 2.6094 3.3102 3.2003

1(106) 20( 106) 20(106) 3.0438 2.7805 5.5231 5.4628

200(106) 20(106) 20(106) 2.8527 3.3473 3.5512 3.5914

1(103) 10(106) 10(106) 2.8187 3.0481 4.5347 4.3801

200(106) 10(106) 10(106) 2.8689 2.6226 3.3285 3.5576

100(106) 0 10(106) 2.2591 2.0213 3.2197 2.1729

100(106) 20(106) 10(106) 2.4841 2.7044 2.9335 2.9867

100(106) 10(106) 1(103) 2.4578 3.3134 2.3167 4.2730

100(106) 10(106) 20(106) 3.9311 3.0589 4.6690 4.7222

100(106) 10(106) 10(106) 2.7004 2.7153 3.7685 3.7374

4. CONCLUSIONS

Using techniques of statistical design, response surfaces for two measures of projectile behavior have
been generated. The generation of these surfaces requires 25 data points. These response surfaces are

adequate to determine the relative influence of the stiffness coefficients used to model the tube/projectile

interface in the SHOGUN gun dynamics code. The response 09, can be strongly affected by changes in

either X1 or X2. However, because the response surface for 0+ exhibits a saddle point, the sensitivity ofO0,
to change in X1, or X2 can be mitigated by keeping the values of these parameters within the range of
values defined by the saddle region.

Since the goal of this report was to introduce the reader to the fundamentals of response surface

analysis and experimental design as applied to computer simulation, the response X3 was only analyzed

at one level. Hence, no definitive conclusions can be drawn.

The factor X4 did not have any effect upon the responses selected. Several possible reasons for this

observation have been postulated, but at present the correct explanation is not known.

10
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